
IL-.-”

31176013481332
. --- ----

-:yl-’‘ ..

r ,,, . . . .. . . . . .. .. .. . .

,, .. .

,
1.

—--- .- -

25E22!5
Z#iEiiE.

NATIONAL ADVI$OXY IWMMITTEE ~OR AEROH&JTI@!. ..,’

. . MO, 942
/.

-“”

..:.?.
. .,,,.
~,$
r’1 .:..!
$. .

.,
.,
. -. ,,

w }
.,

; ;, :;’:+.; . 8,., .....+ - . .. ,,
;! ,..:.;, .‘%,. .,- .-. . .....’. ..‘.,.. ..
‘. 1, . . . . .

,.

.

. ,,

,,. ,
,.

‘t

OF A WING WITH VORT~ S3!PAHATION
. .

.* Dy Lo Sedov

,

(le”ntra”lAero-HydroLiynarn ioal Institute

,.,

,,
;,
I
I.,

“.
P. -- .-.. ,, . ..- -, .,,,.- ., .-,%,.< ,.--~d.d

Washington
Miay 1940

,,

..
.

.

I

l..<~---’ ..-—. .+-’,,_- ,.—--- -. .. :, .__.



-.— — .—

.-.

liATIoHALADVISORY -COMMIKCEE--WE MWOIUUTICS

TECHNICAL MEHORA19iUM lTOq 942
*L!. .-,’.. .. ... .“. . .... ---- - -,.M.-.--..,-...... . ..

OK THE !CHEORY OT.U36TEA3)Y~PLANIm AND Ll!H3!MOTIOH

OF A WING WITH VORTEX SEPARATION*

By L. Sedov

..

I. PRELIMINARY OBSERVATIONS

The disturbances imparted to the water by a planing .

body give rise to a wave form of motion.on the free sur-
face , the length of the wayee increhging indefinitely with
Increase in the Froude number and being directly propor-
tional to the latter In the case of the plane or two-
dimenslonal problem. Near the planing surface the general
picture of the flow as shown by tests presents a true jet
or spray charaoter; i.e., at some distatice ahead of the
body the water surfaoe is practically undisturbed, while
Immediately forward of the body the water iS thrown off In
a Opray.

The’high-epRed planing motion of the body gives rise
to very large Accelerations In the fluid and, In this re-
spect, reeembles the phenomenon of Impact, The chief
forces that determine the motion Of the particles of fluid
near the %ody appear to be the result of the large pres-
eure gradients. As in the case of Impact, it is there-
fore permissible to heglect the weight of the water.

The””dynamic reaction of the water is completely deri
“termined by Its motion in the Immbdiate neighborhood of
the planing body. At large Froude numbers the effect of
the weight shows Up to any appreciable extent only at
some dietance from the body, so that the flow near the
body can be considered &s part of a flow of an infinitely”
exten~ng weightless fluid.. The same conclusion can also
be rbac~ed from another point of view. .Letmus consider a
series. of motions for whioh the angles of inclination to
the’ water surface are the ~~me and tha.wetted portions of
tbe boti70ms geometrically similar.- Applyipg the Lagran4se
integral” to the abs.Qlute potential motion of the heavy “
fluids. we .?btain the Woundaqy condition of constant pres-
sure at the free kkrfaoe in th”e form
.—— ———— ——.—.———--—— ——
*RepoFt Eoi 252, of: the (len.+ralAero-Hydrodyna-mlcal Insti-

tute , biOSCOWo 1936... . ,.
“.
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where

and

..

(1)

t la the time, . 0.

q the. veloolty. ”potential,

v the velaoity of the fluid,

% the acceleration of gravity,

y a coordinate taken normal to the initial Mater
level...

~or steady planing, we h~ve ..

.whoro c 18 the tranelatlonal veloclty in the forward.
direction ooinclding with the x axle, We shall lntro-
.duoe nondirntinelonal magnitudes with the aid of the re.la-
.tions: &;:!)L

*V: ~~: v= 0%:s’
q. axl

= hyl

where h Is a certain chnractoristlo dimension. Boundary
condition (1) then assumes the form. . . .

From relation (2), it is clear that fo~ the same val-

ues of the I’roude number F = .c~
&

the notions becone dynam-. .

free surface everywhere except ;t a very small region at
the edges of the planing Bubface are of the order of the
angle of attaok ~, whioh will be assumed ae infinitely
small in what follows, If the motion of the fluid be de-
termined by the ‘methods of the theory -of waves of emsll
amplitude then In oonditioq (2) It is neoessary to ne-
gleot vl~.. .At a sms+ll ~alue of. the ~roude number

r=: the first .apd. laet terms in (2) are of the order

.. —— — . .— - ——



X.A.O.A. !CeohnicsilMemorandum Eo. 942 a

of ~ and in this case the. wsight oannot be-nogleoted.... ...... ,.-. .... .--, -----. . .-., ... ..., .x..-.
For a large value of the Yroudo number, however, r %$,

the third term has the order of pa, and therefore to an
aoauraoy of the meoond orter of smallness. . .

*?!&=(j “. . (3)
axl

!Chus, for large values”of the I%oude number E, in the
approximate solution. It is neoessary to use boundary Gon-
ditlon (3). whloh 1s equivalent to assuming the fluid as
weightless. In what follow@, the oaee will be oonmidered
where the planing is aasumed to trike plaoe at high Yroude
numbers. . .“

It will bo shown below (section~~ that in the above
case the notion o% the water at eaoh instant of time may
be considered B8 thq result of’ the mi.nulkaneouO action” on
it of a syqtem.of im”puls”es distributed over tha. area .Bwept ‘
out by thq planiug” s.urfaoe, the variation with.time qf. the
impaot preqs~es oq:the free surfaae being +egledted. Thus
stated, the plan~ng problem differs f,rqm that of impaot
on the water. on~y,.in that in the former it is necessary to
take acoount of the disturbance of the water remaining be-
hind or, expreened otherwise, tt In neceBeary “to tako”ao-
count of the asymmetry of the flow in friont of and behind
the hotly.

!l!heenergy “required to maintain the zaotion of the body,
mfiy be oonsldered aB oonBieting of the energy of the dla-
turbed water fid the energy dlseipated lIy the dissipative
forces of yiecoOitye The drag may be computed by the
energy imparte& to the flu~d by the bod~ in a unit of die-
tance, The energ$ of the diBtuabance is made up of the
energy oontaineh ~n the sprays thrown off +ead of the body
and that oj’..tmhe:”dfdturbaneeeeerem@ning.be.hind. “.. ... ,. .... ...

The flou ““pheri”qm.Gnaat the ‘edges ~.n:the caee of the I
, two-dimensional problem were ma~e the sub~aot of speoial”

“study”by Wagner (reference 1), In his :work; he presents
methods “for tha tlieoi!etlcal computation of the pcztion of
the drag .oontrlbuted,by. the spray at the forward edge.
That portion of” the. drag due to the disturbance remalnlng . ,

\
behind the body Io”analogous”to the Induoed drag of R wing.’.

. .
..-

.
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.

For establishing the lriitlal disturbance of the main
flow, the effeet of the viscosity by comparison with that
of the’inertia of the- waters is negligible, On the other
hand, the viscosity is of appreolable effeot on the spray
motion of the water and on the boundary-layer motion, At
small angles of attaok, the drag due to the fluid frlotion
at the bottom na~ be very large. The computation of this
drag is complicated by the fact that at the forward portion
the frictional forces on the bottom are directed forward,
so that the speed of the water In the spray is greater than
that of the bottom.

The exact solution of the three-dimensional hydrody-
namic problem of the ~lanlng motion of a body on the sur-
face of an incompressible, ideal, and weightless fluid
presents insurmountable mathematical diffioultles and may
therefore be treated only approximately. The two-dimen-
sional problen of the steady planing motion belcngs to the
type of flow problems considered by Klrchhoff. The solu-
tion of the. two-dimensional planing problem for a flat
plate has been given by Cha lygim with the.participation
of Gurevitch aad Yanpolsky ?reference 2). A comparison of
this solution with the results of tests shows a very good
qualitative “agreement. Particularly noteworthy Is the good
qualitative agreement of the theoretical law of pressure
distribution with the pressure distribution determined by
experiments !Che laok of quantitative agreement may be ex-
plained by the finite span employed in the tests slnoe the
pressuro strongly depends on the span.

In a Yimdamental paper on the theory of planing,’
Wagner, investigating on the one hand flows of the type
of Kirchhoff and on the other rotational flows about
thin profiles in an infinite fluid,. showed that for in$inl-
tesimal angles of attack, to an aocuraoy of the seoond
order of srnallne”es, the lift foroe on the planlng surface
is”equal to half the lift on a wing of the same profile.
The flows at the edges of the wing and the planing surface
are different in character. In particular, in planing,
thin spra#s are obtalne& at the forward edge, which result
in an addl”tional drag, whereas, In the case of a wing,
there are euction forces -at the corresponding poeitions,
According to Wagner, the drag due to the formation of the
sprays is equal in magnitude to half the suction foroe on
the corresponding wing. It is for thlg reason that the
drag due to the sprays is not difficult to compute. The
ooncluslon also readily follows that the wing always has
better characteristics than the “corresponding planing

.. — -.— .-. -. .—.. —— -. - —-. . -.. I



~ “- ‘-
.— -—-. . .. . . .

“l?.A.C.A..!Ceehaical Memorandum. lVo. 942 6

‘aurfaoe; “ From the nathematiaal. point of view, the plan-
i’n-g”.pPoWtam”osuraasWy+be.. aw.Wwa ~~s -ws-shall -“ohow .hdow ,
to that of the “wing theory by making ude of the “approxi-
mate method~ that have “been applied with great suoQess in
the theory of thiti vinga and in the theos~ of waves of
snail amplitude. “ The approximations made are equivalent
to *hose”of Wagner. . 0 .

.. ..”
On figure 1 are g~ve~ the ex~erimental data ~eriyed

-from ,the tests of Sottorf. (reference 3). !Che tests were
conducted” on flat plates. “ The aepeot ratios* A= If/b
where 11 ie the wetted length, as..meaeured In the tests
and b the span, laid oft on the -.x axis. On the ordi-
‘nate axis the coefficient ~ is laid off:

“(4)

where .A 16 the lift foroe

and p the density of the water.” “

Pron theee data; correa~on~fng to var~oua oonditionO
of motion, it nay be seen that the coefficient K depends

It
only on the ratio —. The ourve of K = ~ indl-

b 2(1 + 2A)
cated by the eolld line shows the dependence on the aeieot
ratio of the value of the coefficient for half the lift
fordo of the wing as given by the theory of the.lifting
liue for slliptlo distribution of”the aireulation. Compar-
ing this curve with the test points, “Wd”may observe’s
qualitative agreement. For A-a,.. we also have a good
quantitative agreement. It should be nbserved that the
experimental values of the ooofficidnt .K for the wtngs
also do nut en~lrel? coinoide with. the tlieoretioal ”values

.and for. small. values of A , for example, they differ as
in the given ease. . . .. .,

Prooeedlng to the stu~y of the unsteady or nonuniform
motion of tho.body.within or along th~ .aur#’aaeof the fluid

●In aerody”n~ics, rthe’”utapeet“rat40 haq-been defined as b/a.
When applied to plknipg, it seemed to us nore oonvenlent
to take as the aspoot ratio the ratto t~/b, since the terms
l.l thp wetted.length and b the.width of step,. may be
considered as definitely est~bltsihed. paramet~rs. ..

L.. –_– -- ___ .- . —-

.. . .. .



6 N.~.&~. !Ma.hnloal Memorandum Wo. 942

we. are immediately oonf-ontedwith the dlfficultlee ehar-
aoteritatio of these problemsq In the aaee of une.teady
motion, the mechanloal charaoterlmtlce of the Body-fluid
8y0tem are not in general defined by very simple geomet.-
YFlO and kinematio data.for the body at the tnstant aon-
flideredam la the.case for steady motion. If, for exam-
ple, in a given tine interval, we have a oonstant accel-
erated forward motiong it would be “Inoorreot to say that
the hydrodynanlo reaotlon of the water may be expressed
as a function of the veloalty, aaoeleration, and geomet-
rio parameters giving the body position- The reaction of
the water will, in general, also depend on the oharacter
of motion of the body in the preoeding.time interval, sinae
the body may have previously given a large dlsttirbanoe to
the water.

In the theoretical study of unsteady motion, a num-
ber of assumptions are usually made for computing the
hydrodynamic forces, One most often made is the so~called
Hstationary forcesll hypothesis. According to the latter,
it is assumed that during.the unsteady motion the foroes
at each instant coincide with those of a corresponding
stea~y motion defined by the same geometric parameters
giving the position of the body and its translational and
angular velooitiesa The values of the fOrCeB determined
by the stationar$ foroes hypothesis in some instances dif-
fer considerably from the~r aotual values in the unsteady
motion.

Our oentral problem is to study the relations between
the forces obtained aoaording to the stationary hypothesis
and other assumptions and the actual values of thase forces.
Our work oonstltutes an application to the planing problem
of the methods and results of the theory of unstead~ flow
about a wlnga .In addition, we shall attempt to generalize
and simplify the methods oonsidrerd and”present them in a
form where they may be conveniently used for study and for
praotioal applications.

11s FORMULATION

AMD ITS RULATIOH TO
.

.

OF THE PLANING PROBLEM

THE PROBLEM OB’A THIN VIli(i
.,

We shall oonsider the main part.of the:flow; where
the water moves continuously, The flow will possese an
infinite velooity at the edges of the planing surfao~ where
a thin spray is thrown off.

. . I
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/““ We Bhall determine the otion of the fluid on the
basis- of th-er following..as p#-lan4s - . -------

[

‘1. Aa shown by ex riments” there Is no spray 6epa-
ratlng at the trailln edge at large planing opeedm. .The
waters in this case, lows off smoothly tangent to the
bottom. WQ shall 00 despondingly require that the veloc=
ity of the fluid at e trailing edge be finite.:...

2. Analogous to what is usu&ly aseumed in the the-
ory of a.thin w~ng whexl formulating the flow conditions
and in the theory of waves of small amplitude, the.botand-

.ary conditions for the determination of the potential
flow on the surface of the water”and at the bottom, we”
shall transfer along a vertical to the horizontal surface
coinciding with tho undisturbed water level- We shall
thus reduce-the problem to that of the determination of
the potential flow of the fluid at the lwer portion of
the half space bounded by the horizontal plane. This ap-
proximation clearly does not” hold true In the region of
fornation of the spray and at the spray” itself. The mo-
tion of the water in the spray does not, however, have
any appreciable effect on the disturbances of the main
mass of fluid by which disturbances, the chief terms of
the vater reaction, are determined. Without too great an
error, It is permissible to neglect the spray. It may be
shown that at small angles of attack ~ the thickness of
the spray and the momentum of the water thrown off in the
spray in a unit of time are of the order of pa (referen~e
1). In what follows, we shall assume that ~ is very
small and shall neglect enall quantities of the order of
pa (references 4 and 5).

3“- In the dynamical boundary condition on the “free
surfaoe, we shall neglect the weight of the water and the
squaree of’ the absolute veloolties of tbe water- It may
be shown that on the free surface ever-here, with the
“exception of the emall region at the edges where the spray
Ie formed, the nagnltude of the absolute velocity v is
of the order of P and therefore v~ -pa. The assumption
of large planing velocttles .in.the horizontal direction
Justlfiee the negleet of the weight of the water.

We shall sea below that the assumptions enumerated .
above .hm.ediatel~ reduce the.planing problem to that of
the :notlon of a wing. I?ora steady planing notion, ae we
have seen in the preceding paaagraph, such a desoriptlon
corresponds to aotual physloal laws. 3’orthe unsteady mo-
tion, this method of formulating the problem when applied

I ~ . . . . . . -— ------ -. –——- —-- -
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to the wing leads to theoretloal oonolunlms that show
good agree~ent with test results.

Mith the aid of the assumptions enumerated above,
It ia not diffloult to formulate nathematioally the
boundary oonditlons for the determination of the unsteady
motion of the fluid-

Let us oonsider the two-dimensional problem. In the
plane of motion tlie wetted portion of tho bottom profile
iEI represented by the curved 8eginent Mflll.(fig. 2). we
shall study the ease where the ourve ~fEf differs
allghtly, in the eenae indioated below, from itfi proJeo-
tlon MM on the undisturbed surfaoe.

~Let some point 01 on the initial water level he
the arigin of a fixed 6yBtem of coordinates. The point
-o,“ the center of BUT, we shall take as the origin of

“ the movable s~stem of oovrdlna+es Oxy , the .y axis be-
ing direotod vertloally upward and the x axis horizo’n-
“tal. . .

We shall denote by V(X, y, t) “the ?eloctty poten-
tial of the absolute motion of the fluid. Referring the
boundary conditions to the x axis, we shall htive along
MN the condition

EsE=.vn
ay

. (1)

where ‘n is the nornal component of the velocity of the
botton. The dependence of Vn on x and on the time t
is determined by the geometric and kinenatic oharactoris-
tios of the ~1.a~ing’surfaoe. Let y =“ f(x) ?)e”the equa-
tion of the ourye M“”lMI for some position of the bottom.
We shall linlt “ourselves ‘to the ease where f(x) and
fl(x) are small. Aftor an infinltesln”al displacement of

.“ ,the bot%on, we shall have for dyldx, to an aoouraoy of
the second order of smallness: ..’.

.. .
... . “ dy

—.7 B + f~(x)
dx

where $ is t.l@ angle of rotat~on. If u and v are,
respootively,” fhe.horizontal and vertloal components of
the .veloaity of point Ml and. u) the angqlar velocity
of the botton, we may write for vn.. ...

. . ..

—— . ..— .-. .. .- ... -
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Vn, = - v-w(a+x)+ o+”
...< ,. .-.-.,., -. -f, ,.... ....-”s, . -. . . . . . . . . . . .

or

vn’ = -(v + UJa) - Wx + Op + oft(x) = V1 -Wx+ Cf t(x) (2)

where
TX = -(v +wa). + cp

I

For a plate ~orming an angie “~ with the horizontal,
we obtain

‘n=vl-wx (2a)

If the profile .MIN? undergoes bending, then fl
ie a function not only of x but. also of the time t.
In this case, on the” right--hand side of formula (2), it
Is necessary to add the normal oomponent of the velocity
due to @he motion of dofo.rmatione

Sinoe the fluid Ie-at rest at lnf~nlty, the Lagrange
integral on the free surface gives:

*(art) 1
at

+ - v=+gy=o
2

where g Is the aaoeleratlon. of gravity, and a is a
coordinate in the fixed system of axes (fig, 2)9 Dieeard-

ing the terms gy and ~ Ya

3, we obtain

*{a,t)

at
..,

Thus”, on the”l’ree” sur%ace w
“. with respeot to time although

in acoordanoe with assumption

=0” (4)

maintai”ng a oonstant value
it may differ in value from

point .to-.@oint. We shall a~sume that. the motion began
from the state of rest and considering the in~tial vaLue
of Q to be zero. we have everywhere on the free surfaoe,
over-whioh the bo~y has not pas~.ed, the oondition

Cplalo

We shal~ denote by S ;.the path of the planing
on the water surface consisting of the fre~ port~on
the portion In contaot with the bottom at any given

(4a)

‘body
and
ln-

1. —— — - - . . —— _ —._ _
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Btant. On..the free portion of the edface S, the func-
tion ‘q(a) Is determined by the charaoter of the planing
and may be found from the condition that the velocity of
the fluid at M iISfinite.

.

The potenttcd of the unsteady motfon of the fluid at
each given instant may be considered as arising from the
Inpmot of a system of Impulses P@ = -~(a) distribut-
ed over the 8urfaceB. At a taucoeedlng tine instant, this
Ourface will be Sl > S and “the system of impuleee will
be pt ~ where, on them-free portion of the surface S,

Pt sup.
t,.

Tho potential function
.

w(z) = q + iv may be extend-
ed to the upper half plaho ozs the basis of the Schwarz
principle of syhmetry fiinoe to the right of
axi~, q =.O.O

H on the Ox
Let B (fig. 2) be the position of the

point M when the unetemady motion is eet up. We then ob-
tain the extended function w(z), which is holo-morphlo
throughout the plane Elf or All .(the point A &enotes
a) If the circulation about an infinitely removed con-
tour “Is different from zero, and

q(x,r) = -f? (x - Y)

*(X,7) = *(X - Y)

. Therefore, tit the separating edges above and-below, the
value of p “ is at eaoh instant the game in nagnitude but
,oppoeite in sign:

q(c) = - q(cl)
%

. It therefore follows that for the motion of an infinite
fluid determined by the funotlon w(z) the line Elf is
a line of discontinuity of the horizontal oompo.nent of .
the .veloulty of the fluid. The vertical component of the
velocfty.changes continuously in passing through” .BM. The
horizontal components above and below are ‘dqual In magni-
tude but oppositely direoted. Denoting the disoontlnuity
ia.the velooity by y(a) ~ we have

Y(a) = ~ (cl) +(c)=

cm~..Y(a) may be considered as the
tloeta distributed along BM ●

2% (cl) (5)

dep8ity of the vor-

. . —— — .- -— .—- . . .9
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Let. r(a) denote
!
he clroulation taken about Home

ilaaed path.. ~. .(flgb,,a .Quttlng A? at..pqtzat O W the
dlreotion shown

Obvi-ously

..
whenc’e

on.the fiketeh..”

. .

r (a) = -qJ(fQ

r(~) Is the olrculation about

. (6)

MM at the instant oon-*-
8idered~ If the ciroulatlon about MN is.known as a
function of time, then, oonslderlng the various points on
AM as the positions of point M at various instants of
the motion

LL=ao+ J odt (7)

to

and we nay compute Y(a) by the formula

drdt=-~Y(a)=-——
dt da O dt

(6)

Oondltions (l), (4)s and (4a) and also the extension
‘of the flow in the upper half region apply In the same
form also to the three-dimensional problem with the dif-
fereme only that the discontinuity of. the horizontal oom-
ponent of the”velocity behind the plming body depends in . .
this caae not only on the longitudinal coordinate, but
also on the coordinate in the transverse direotion.

The wetted length M~191 m MN = 2A in uneteady plan-
ing may change with time. The wetted length as a funobion
of the time depends very nuoh on the fern.and”dimenslone
of the bottom, on the amount of Immersion, “the angle of .

attaok, and also on the weigh-t of -the water.. It is im- “
portant to note that the wetted lemgth cannot be given as
a parameter of the motion but is determined in the prooess
of solution of the hydrodynamloal problem.

If a is conelderqd as oonstant, then. the problem
we .ha+e formulated colnoldes exaotly with that of the

——. . . . .. -—.



. ..

.
I

12 3T.A..C.A. Technloal .MemoTandum No. 942

determination of the unsteady moblon of an infinite flu2d
about the thin profile xl~l with a eurfaae of dimoonti-
nult~ separating at the trailing edge. !l!h~problem of
the motion of a flat plate with a line of disoontinulty
has thus been formulated by Wagner (reference 6)and that of tbl
oscillations set up has been considered by Glauert (ref-
erenoe 7) and Kelclysh and Lavrentlev (reference 8). We
shall generalize this problem, extending It to the ease of
a variable a and a thin profile of any form. Moreover,
we shall Investigate in greater detail the physical char-
acter of the hydrodynomlc forces and shall study the forces
in the unsteady planing motion.

III. DETEEMIMATIOH 01’ THE FLUID FLOW

To determine the potential function W(z,t) of the
fluid, we have, on the basis of the assumptions made, the
following conditions (for notation, see fig. 2):

1) Outside the segment BN

dw—= u - Iv
a%

is a holornorphlc and single-valued function
of Z.

2) At Infinity, the fluid is at rest but the circu-
lation about a contour La enveloping BM iS
in general different from zero and is equal to
r. = const. Expressed otherwise, the series
development of dwfdz near an infinitely re-
moved point has the following form:

dw r. 1 C= C3
—-

Z=
+ —+.99

2ni z ~+E3

3) Along HIT on both sides

a# . -Vn

and
.3

is continuous along BM.
Y

4) Along EM, .we have a disoontlnuity in the hori-
zon~al .oomponent of the velocity:

. .- .1
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4!2 (())‘(a) = &a_(%?..:_.da_. -. . - ,-.—...--..,,.>----—....“A-. ~,.,

The funotlon Y(a) should be de+ernined so that
at point M the veloolty of the fluld *S
always flnitew

Let us bonsider the function

Let”us”take

x>a>O gives
above

the branoh of ~’, whiah for

+~. Then in approaching MM from

and In ~proaching MY from below

Along AM we.-have -~.. ..... ...
The” funct~oil” ~(”z) is holonosphic.-and single-valued

“everywhere outside “the segment EM; “ltO~r an Infinltelsf
removed point the series below holds- true, nlmely:

.ro
F(z) =m+= +..”6

z

Applying the formula of Cauchy to the function r(z),
we ;ay write “ “,,

i..

. .

where the Inte%”ratlon for both integrql~ 5s “to ~q:”pe~formed
in the counterolockwlse “dlreotlon, .. . . “ . .

.Contractidg the path Lz to BIW and expanding path .
L to lnfi.n~ty,-ye obtain fromm;the above expa@sion for
F?z) at Infinity”” “ . .. .

3’(Z) = ~
%(x~ + io) - F(XO -

l’
s r.it)) dxo + ~

2Tri Xo-s
.

-. -.— .. ——--— -- — . . ... -. — — —.— .

.



.

I

.

14 IJ..A.C.A. Technioal Memorandtun No.. 942

Denoting by Uz - Ivl and u= - iva the values of dw~da
in approaching BIV from above and below, we have

and along MM

Va s Vl = ‘Vn

We ttius find Slong Ml?

Y(Xo + iO) - R’(Xo - iO) = - 2Vn(Xo)J aa - Xoa

and along BM

F(xo + 10) - l?(xo””-10) = 2ulJxoa -

Henco :

+a

dw 1

r

2Vn ~
—-
dz = wJn:-a X. -m

aa . ~(a) Jxoa - aa

dxo +

1

Between a and X(),

J
=0 ‘o-~ 2niJza- aa

(1)

there is the relation

Xo = a - al- a

The first term of formula (1) gives the velocity field of
the irrotdtlonal mot~on of the fluid at a given dlstrlbu-
tlon of the normal velocitioe along Ml?. The second term
gives the velocity field due to the vortices sprlnglng
from the trailing edge of the plate and distributed along
BM , in the presence of the fixed plate MN, with dens%ty
Y(a) . Finally, the third term gives the pure motion of
circulation about the fixed plate.

In equation (1) replacing vn by VI - Uxo + cfl(xo)
in accordance with formula (2), sectionII, and performing
the integration of the first integral, we obtain

.

..
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a-
-a

al

1

J

Y(a)~ da
+

tii= a. Xo-z

whenoe

w = Ivl(z - m) -*(Z -~)a

+a #

Xo

r.
+

217~

+

-a ..

1 =1

f

xo-~-z.-~
+— Y(a)ln

‘n i
=0 xo+m-=-~

r.
+— 1.(E ~ =)a

‘lti
(3)

If the “bottom has the form Of a parabola, wo may put
..

Y= f(x) = -exa

whenoe

?I(x) = -Zex

In that ease, we shall have

dw

(
—=iv~ 1-

)

+ i(w + 200) (s --Js=)a

d% d’ “ 2 ~

(’)

dxo

I

.

. .
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w(z) = IV*(Z - ~) - ‘(”+ 2e.c)(z - ~)a +
4

L
al

1
+— Y(a)ln ‘0

-m-,--da+

21Ti
xo+~-vJ~

o

(3a)

Comparing these formulas with formulas (2) and (3) ,
we see that curving the bottom in the form of a parabola
is nnalogous to the rotation of a flat plate. (l’or a
flat plate we may put fl(xo) = o.)

The oondltlon that the veloolty be finite at point
M requires that the coefficient of

in the expression for dw/dz become zero when z = -a.
Thus ,

‘a vn ~

f

al

‘1

Y(a) ~’xoa - a“
-2 Xo +

Xo+a
da. + r. =0

xo+a
“-a

o.
or

- ro-a~avncd=o=f’’(a)c’a “
-a Uo

We shall set

+1
&

J
r

l“-uduff(au) _ = B1
IT l+U

-1
so that If m

.Z”
()

n-l
fl(x) = . n% ~

(4)

then
n=a
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m

We then have
+8 .,

J?.R’’o=@a(.l+%+o~l)=~a’a“)
For 8 flat plate

loeity of the plate at
the wetted length from

BZ D O and ~a is the normal ve-
a point whose dlstanoe Is one-fourth ‘
the trailing edge.

The oondition that the velocity at point M be finite
in the notation of (5) aesumes the form

. ro-
aa’n =1’ “.’-’= “)

The above relation ie an Integral equation of the
Volterra type of the first kind. Tor given funotione
V=(al ) and a(a ),

f
it Is poseible with the aid of (6)

to determine Y(a . YOF a thin wing, the funotion Va (ax)
completely determines the strength .of the vortioes spring-
ing from the trailing edge iraan unsteady motion of trans-
lation with emall angle of attaok.

Yor a steady planing motion with oonstant velocity co g.
we have WE y = 0: 8=80 = const.

Equation (6) in this ease gives:

.- r. =. ~tiaovao = 2wao(S0 + PI) oo
..

Conslder3ng the unsteady motion as a dlsturbanae from
the Btate of eteady motion, we may write equation (6) thue~

wh”ere

[l-Y[a)]-da- %A(ava) =.”.

A(ava) E ava - aovno
. . .

(7)

1 -- — -- . . . .—.. —— .— _ _____ ._ -_ . _— --
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~or a r.lgid wing profile particularly, CL ‘and Pl
are independent o.f time - If, in addition, the horlsontal
velocity at”the trailing edge $8 aonmtant: o = const.,

then

[
2trA(ava) =2na v +w~- C(p - po)

1

Henoe in this case the intensity of the trailing vortices
does not depend ont the wing profile.,

Ata=a= the kernel of equation (7) becomes infi-
nite. To remove this difficulty, we shall Dultiply both

1sides of (7) & —
G

and integrate with respeot to

al flom a. “to u.

Changing the order of lhte~ration aocording to the” .“
Dirichlet formula, we find .

u .

[

o(u)= .Y(a)K(uJa)da (8)

L
o

where
.

J“-n /a

(A ohange in the variables has been

u+a u-a
al= —-—

2 2

The kernel K(u,a) Is finite and,

z

nad.e here

sinll)

If a Is constant, de-
pends only on u - a and may be expressed by elllptic
functions. Tho integral equation (8) may be solved by the
method of successive approximations-
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For h confatant. vaiui of...a, equation,.(9) ooimbides
.wlth equation (7).” Denoting . . .

. .,
al, - B ... 0.

r
,...‘

Y(u)da = - Cr&) - rO] a -rt~&l) .. ,-.
d
ao

. .
‘i

aid setting ao + CL1- a=”aos. we mby”reduce.”oqmtion (9)
to the $orm:

1

f

r &?
2m8(ava)-1’1 (czJ=ao Y(ai+ao- aos)

lJ 1— -1 de (10)
8-1

al-ao
l+—

‘o
If, after tLsufficiently lnrge tine interval, the 08cilla-
tions tcind to app&Occh a Oortaln utoady oscillatin~ mtatem
we nny llnlt ourBelves..to...a study of this a%~te, 170r
steady oscillations we Eay put a. = -~4 Equation (10)
then assumee the fern -

..2W8(aVa) - r~.(al)= ao t

J
Y(czl+ a. - as)

e
[/’s-q d. (11,

In equation. (10) we ~ay in general oonsider a. = -~t.
If 8(ava) is such that for u< a ; 8(ava) = O. Under
this condition equation (11) holds ?rue for an arbitrary

.. .: .. ,*.-.

Side by tald,ewith the.problen of
1s not diffioult to obtain a oonplete

THE ST~P

etoady planing, It
solution of the

P problem-of the landing with. constant velooity of a flat
“Btep’ on undisturbed.vateri The. solution.of this.~roblen
Is rendered slnple by tho faot that during the Innersion
with constant velooity in a weightless liquld of a wedget .
in.the case of the..%wo-~~moneional. problen, or .oX a oone-

. .

1. —— —- —— — —
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sha~ed body,. in the ease of the three-d imsntaional problems
the notions. of the flu$d.at dlfgerent time ~nstants are
dynamically similar. Thb..problem of me Iandtng od-a step
with constant velooity has been considered in the wurk of
Wagner (referenoe 1?, We shall oonslder the problem once
more here and add a f~w simple reeults.

Let us consider a step whioh settles with constant ve-
locity a on an undisturbed water surface- We shall denote
by p . (fig. 3) the angle the bottom makes with the horizon-
tal and by K the angle between the horizontal and the
landing veloalty. We shall assume the angles $ and K
both to be very pmall,

Since the” motions of the fluld at various Instants
are dynanlcally sinilcr, the wetted length 2a and the
clriuiation along It are proportional t;

1 drY=--— = Const
. c dt

and therefore equation (7), section 111,

- ‘ava = ~J’r
o

al+a
Setting a = au,— = So = const

a
Ing v= by c(~ + ~), we find

an-l

time. Hence .

. .

gives

da

> 1,.

I

.
- 2~”c(p +K) = Y J“j-

whence

du

2110(p +K)

y = - ~ + ~n(so + .J~i) “.... #..“
The ninus sign shows that “the horizontal

(1)
.-

and repl”ao-

(2)

velocity be-
hihd the step o? ~he eurfme of the water ~S dlreoted- to-
ward the.’left-

.. .... . .

With the” aid of””fh~riul’a(2), sac”tion III, it Is easy‘.

—— .——— — —— .—— . ... -..—— .—.. .
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to determine the v’qrtieQ oomponent of the voloolty o~.,. ..,,
.”:the -fluid:~tWk4em. oa-tha . x,~axis.. ‘.S#$,t3gg..x/g_E

we obta5n after a ei~ple computation .

[

“1“V=ci(p+lc) .–(JTi]~~+ ln(so+ Aoa-l)

.

+1. JF=i&=i -1
- lnsso

. . 0+00 ) ..]
Using this value for the vertical voloolty, it is not dif-
ficult to .oompu$e the rise II of the water “at any point
with ooordlnate “

We have:..

a* = const

a* = al +a+x

Since

Ct; e.=
a~.

al =
S.-1

u

and “

Set
x= saz—

‘o -1

therefore

. .“

tihenoe

. .“,

.

,.
s +s“a*= Ct
00 -1

~* (80 - 1) .
t=

C(so + s)

dta-
a*(s - 1) ad

C(so + s)*

;.Zhus, for-the rise .ms., we f$nd the formula

..— .— —— .. .—-— —. - —
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t e

q. 1 “a*(so - 1)
Vdt = -

J’

WIs (4)
9

0 (00 +“s)=

At the forward edge x = a, s = 1, and U* = (s0 + 1)89
so that here

1
a(soa - 1).r Vds

~.-
0 . ~ (.sO + S)a

(4a)

Substituting v from (3) and performing the integration,
we find

On the other hand, from geometric considerations it follows
that at the forward edge

q = a[a~ ‘(so - 1) K] (6)

Equating (5) and (6), we obtain the equation for the de-
tornination of so as a funotion of p/ l;.

If II = 2a Is the wetted length and 1 is the
portion of the wetted length below the water .level, then

Y=*”-: (7)

On figure 4 ie plotted the curve showing how ltj~ varies

with B/K in accordance with formula (7). When P/ ~=,
we have \l/\ +~. It”is worth noting that in formula
(7) c does not enter and therefore the ratio tt/t doee

not depend on the landing velocity,

Vs SOLUTIOH OF THE IHTEGEAL EQUATIOH FOR STEADY OSCILLATIONS

We shall now consider the solution of the integral
equation



.-—-

:

for etendy oscillations abo,ut,a. oertain steady planing
‘ilotlon. ~-ew.. ... ...*..- m ,,-,-..,,.. .... . .

8(ava) = _Ue
ikt

= A. 008 (kt +c”)

where A = ,Aoeic : k is the frequency of the oscillations.
.

We shall consider small oscillations, such that the
amplitude A. and the amplltude of the variations in the
hcirisonl@ velocity of the trailing edge are very umall.
We shall~assnme the following law of motid.n.for the point
M:

.:, %=cot+~”

whers -al ia a f.unotioan of time and aasumee only emall
value 0. !J!oan accuracy of the seoond order of smallne66,
we obtain kaz

i—
tl(ava) = _Ue-oo . .

The solut~oti of equation (1) is found by setting
~z.~ . ka ~ . .

i—
rl(al) = ~De co

,
whence

(2)

Denoting. the abstract number kao/oo by M, * wo nay write
.: %“ . . ..’

-:. ik~. . ;.
Y(al + a. - aoe) u - ED ~ e~ e

i~ e-i~fi % ““

.- ... .. . .. . . .

‘ “Substituting the expressions for I“(c&z) and
Y(al + ao - aos) In equation (1), discarding the symbol

. . “... .. .. . .“ ikal .

~ and dividing by the comnon factor e~ , we obtain

“Th”eintegral on hhd;ri-&%;hand eide. may be expressed b? a
Bessel function, -.Fbr this purpose, we shall make use”of
the Integral representation of the Hankel funotions In the
Poisson form (reference 9).

. ...

L . - .-- -—-— —. -—..- .-.
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where

#or the path of integration, we may take any curve situ-
ated in the firmt quadrant of the w plane. Roplaoing

w by .Reia and aeeuming that (7>0, ve have

H -JO

and therefore .

Using the a~ove formula, we find

[1e‘“s‘J’- -~ds=d-iH:l)(A)+‘v?)]-s
The above relation has been derived on the assumption

(4)

(5)

that
u >0 but it is obviausly true also for ~ = O. Substi-
tuting u = O and replaging 1 by -i, we find

“Substituting the value of the above Integral in equation
(3) . we obtain ,

. .
w“henoe

4e-iP A
D=

“Mll@)(lJ - iHyUM)J

.“

(6)

.. I
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l’orlarge;VSIIXQ“ofTp-t.;.re~laolng the Hankel funotlons by-.,.
their. aawptot%a--expr eeeione”,’’wfindnd - - - .

.. . . ,....1

.[

WI .. .
D=A~e-~

... .. .
Hunce . . ..

. .

Yor smalL values of...V, .we obtain

,.. ~ J
“n=.

..-. .~+l@+~lnL.. . .-
.. Yw

where
Y := 1o781072

1,
...

whence

. .

. .

. . .

. . . .

Um D = 2nA
t .+ -Q

This value of D may be found If the circul.atlon
about MN Is dotornined in the same manner as in the
case of etoady planing and In the wing theory as In tho
theory of motion with conetant oirculatlon.

Sinoe the integral equation ie linear, it is possible
with the ald of a Fourier sorlee to obtain the solution
for &ny periodio law of .oBoillatlon. If

c1

z

ikna
a(av~) .=~ An ~~

By an analogotis nethod with the aid of a Yourier in-
tegral rmy be found the solution of integral equation (1)
at an arbitrary value of 8(ava), provided .

I
._;l’(ava)l da,..?. .:. -L .. ..

remaine flriite in the re~ion of a ooneidered.

.- ... —
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VI. HYDRODYNAMIC l’OhCES II?UIiTSTEADYPLAHIIW

OR UHSTE~DY MING MOTION.

We shall now establish general formulas for the hydro-
dynamic forces with the aid of the methods given above for
the aeterminatl~n of the flow. S’orsimplicity, we shall
limit our study to the case where the bottom Is of para-
bolic form.

Let X and Y denoto respectively the horizontal
and vertloal oomponent and M the moment about the center
of the wetted length of the hydrodynamic force acting on a
unit width of the planing surfaoe. The pressure on the
bottom we shall determine with the aid of the Lagrange in-
tegral. Neglecting the squares of the Talue of the abso-
lute velocity of the fluid, we may write

+a +a

Y=

f
(p - po)dx = - P

J

aq(u,t)

at
-a -a

ax

+8 - +a

x=-

r

(P- ‘rPo)#x = - By + p

1

fl(x)w dx

T -a -a
+a +a

J

M = ‘ (p - po)xdx = -p

f

~P(a,t) dx

x at
a -a

. .
In the case under consideration, fl(x) = -2ex,

that

“x= -p Y“+ 2e M

It remains to compute Y and M. The variables
and x are connected by the relation.

t:

a= x+J(=+%)dt+Const
o

and therefore

(1)

(2)

(3)

so

(1)

a

(4)

.

—.. -
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.

. . ..- . .

where

.

~, .- /&]da
“ Jao .

we obtain

‘=~(o.+~)ro-~P l.(.).a-p+a*. (~)~+Q2)j f“- “a-. 0

Tho value of M. ay be easily found, using
at

formula (3.8), seotion III:

Gq(xot)
—=&

at
aw(z,t)

3t=-

where W* denotes w + 2eo.

Substituting now- % from (6) in formula (5)

ing that

+a +a

pm“f dz=- Tr(xo +
x -X.

“-a

J-) ;

and not-

..— .—— —— .—
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J’ L‘“d-d., ;_=o
-a

...

we find

‘a.

we shall make use of integralTo ~lmpllfy this formula,
equation (6), section 111, from which, noting that -

IIx. > a, Xo<o

we have .

al

J
Y(a) da

= tia Va -’o+a

... a. ~

Using the above equation, we obtain for the lift foroe the
final formula

‘+’$O[”l+?=+’11)%r(a
+

o
Por steady planing

‘Y=O; s = const; vl = Va = cl~ = const
..

and in this ease, formula (II) gives
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TO = pnao va = Pmaos P ●-.-,-, ,. ............ . ...

This Is the well-known formula of Ya&er for tho ‘llft
foroe in planing.

.In etuilying the motion of the fluid during the in-
nerslon of a “slightly inolined V botton, Wagner IdentifAem
each of Its inetantaneoue condition of notion with that
due to the inpaot of a plate of width 2a whioh, after in-
pact, has received a velocity equal to that of the einking
bottam at the Inetant of time oontaidered, He thus obtaine
for the lift the formula

,

This aueumption oorreaponda In our considerations to the
aubatitutlon in formula (7) of the valuea CEO; Y=o;
r. = O; after which it agreea with the Wagner formula.
We pay note that this la the first term on the right-hand
aide of formula (II). This. term takea account of the ef-
fect of the so-called added maaa. The term

P“a(’ + %?)va
gives the llft force, which may be ob-

tained on the ‘stationary hypotheatau and firially the laat
term t8keEI tnto aCCOUt the effect of the horizontal veloc-
ities of the fluid on the free surface, which velocities
are “abaent in eteady planing-

. We shall now oompute the mamitude of the moment. On
the baaia of (3) and 14), we hav~ .

d -a

Prom formula (2a):, aeotion III, we find .
. .

. .

.“.

(8)

(9) ‘

‘Independently of Wagner and on the bas”la of other aonaider-
atlona, an analogoua formula wae eatabliahed by M. A. Sokolov
(referenoe 10) for the dynem5c oomponent of the lift In the
oaae of steady planing.

.- .- -. — -- —
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w-Substituting In (a) the value of. Xz

the value of ~ from (7), and noting
at-

942

from (9) and

that

f J‘a.V=%=+ a#==@=y
-a . -a

-x=’

we obtain #

. .
. (lo)

Since “ .

~~~(a)~~ da = ‘o - ~ava =ro - tiavz -Ta%z

formula (10) is considerably simplifi-ed to

. . .
For a flat plate, U-Ix is si~ply the angular rotational

velocity w and for a plate bent into the fern of an arc

of a parabola. y = -ex2,
. .

% =w+2eo

Fo&nula6 (II).and (III)”irerederived for the ease of
planing, By simply doubling the right-hand sides, we obtain
the fornulas for the lift and moment of a thin wing with
variable. chord in unsteady or non-uniform notion with sepa-
ration of a line of discontinuity of veloolty.

~ above and below are, InThe values of ~ and at

fact, equal in ~agnitude but opposite In sign, Hence, the
increase in-pressure below and the decrease in preseure

above!.. *
‘Ue ‘0 z’

-are exactly equal. ~or this reason, to
. . ,..

. . ..
. . .
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Y, .,
obt~ln the,_foFoe aotiag. on the wing, It is neoeseady to
double--the foko~s otitalpqed”fo”r--theplanimg nation’. .We-- .

c may note further that for the ease of a wiringthe term 6on-
taining va in the” formula for the pressure ie not neoes-
sarlly negleoted, shoe the value of the absolute velooity
of the fluid above and below are exaotly equal to eaoh
other, so that this term does not represent a
Jump in pas’sirigthrough “’MN. !Cheterm with v%re;~%~e
formula for the pres~ure on a wing is equivalent to the
appearance of suotion forces direoted to the right at the
sharp leading edge- This concentrated force modlfles the
hydrodynamlo aotioq .of the,fluid.as a result of the rare-
faotion uhloh Actually take”s plaoe at the rounded leading
edge of a wing, To obtain the horizontal bomponent of the
hydrodynamic foroe acting on the wing, it is neoesaary to
double the horizontal conponent that sots In planing and
adfl to it the suotlon foroeo.

We shall deriote by P the suction fo:co bt the lead-
ing edge of a wing. The value of P Ie readily computed
sinoe ,

.

The integration is performed In the counterclockwise
direction about an Infinitely small cirole C with center

at po”lnt a=a,
()

At this point “ ~ a has a simple

pole. Excluding the polo z=a, we obtain

Using the expression--for ~ from (2), section III, we find
a% .

[.

ma a ‘a ff(xo) Jaa - Xoa
P= +& v=a v — -

J’
2 ‘n” a-x.

-a

--”. .. -, 1“ %

J

Y(a) 4/-

‘2s ‘ ‘o-a
ao

On the basis of equation (6), section III,
of (5), (4), section III, we have “

.dxo

r. a
da+= 1
in the notation

~–.- . . . >— . -— .— . .—
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% -

f

B“ Y(a) da
n-

lT
.o~

and

“u 0

r.
( ‘+ + C$z-~+av1+2 )

+8+8

o

-[

ff(xo) /82 - Xoa 2ac

[

f ‘(xo)dxo
dxo = y

Tl” a-x.-a ~
-a

!Cherofore:

1
3

( IV)

partlculcrly for a motion with oonstant circulation

We shall bring out more in detail the significance of each
of the components of the lift deternlned by formula (II).

l’or simplicity,, we shall consider thci plate as flat;
We then have for tho unsteady planing

——.-
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. . . . .::.’ ,... , . . ..“

.(X1 ..% .Ez#v.”;.) .)
. ... . *....:.. -. . .:

( “ii . .)
. ...

Ya=ipnacj+~va. . .

,“t

v’%)f’:- .pa
.. ““”y;=

. .L (..
ao o

. .
,

(v)

. .

a a c~nBtmotion of-awing with .

,. . Y 3 = p-cioJd a-
a. ‘o

~a
...-
. ..*

zl=- &*+
8 dt

. .
:.’

pnaavl o

a%

J
~(a) da a

..,’&==-= 1

.:. .
.,

(Va)

The foroes Yl, Ya, and Y~ are perpendicular to the
.pl~te (fig. 5), Y1 and Ya being applied at the oenter

ari~ “Y3 8t a ~istance fron the leadin%”edge equal *O one-

fourth the wetted length, ..

If we oonsider the classical problem of tha motion
of a plate of variable width 2a within an Snfinite fluld
moving as a potential and continuous flow everywhere exoept
at the edge of the plate,. then the general hydrodynamic re-
aotlon Is reduoed to auot~”on foroes at the edges, the foroe
Y1 and the monont

.. .
., ..

~1= 2 MC* =
- & (+”)+ ~aav’(a + %). . .. i., .,... ....-

1 -.
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which we obtain by setting in formula (10) r. = Y = O
and doubling the right-hand slde~ The foroe Yl and the
monent M~l appear aa a reeult of the mo-oalled addi-
tional virtual masses. Tor a constant width 2a

Thus, the force Y1- and the moment ml do riotdepend
on the circulation r. and on the vortic!es springing from
the trailing edge.

“ If we consider a notion with conetantl c~roulatlon for
which motion the condition of finiteness of the velocity
at pgint M Is satisfied, we obtain.the oomponent ~1 + Y=
and the moment ~x (reference 11).

The force Y3 or T3 depends on the strength and

positions of the separating vortloes. As the steady con-
dlt~on is approached

Y14 o, Y3 +0, Y+Y=

The expression for’ Y= for unsteady motion coincides with
*he expression for the entire oomponent ~ for steady mo-
tion with constant translational and angular velocities.
We have, in faot,

Y= = 211p8CVa (11)

and, on the other hand, for steady motion, If

.. ‘Q = const: ~ = ~onst.,

. we have (see work of L. 1, Sedov (reference h) pp. 30 and
31)

and

r = 2mavn

that is:

Y =;2tipaova (12)

The right-had sides of formulae (11) and (12) agree

.——
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not only in outward form but. in aotual elgnifloanee as. .7.-- ,.
well,” if by” a-”’and’ Va; .in fQr.mulm..Q2) we underg,$?nq
the variable velooltie8 for the given unsteady motlon~
Thus, ~a is that value whioh we should obtatn for the
entiro oomponent ~ If we were to oompute It for the un-
stead~ motion aooordlng to the rules whioh hold for
BtOL%dymotion, I.e.a if we assumed the stationary hypotih-
eOis.

●

Zor”aboelerated motion, If

then Y(a) < 0 “

i.e., the water breaks away behind at the step, In this

t31way0. i?ence, the lift force obtained on the stationary
hypothesis with the virtual additional mass offeot taken
into account has a value to-o large. In the caee of re-
tarded motion, the reverse holds, true. IIere we are con-
fronted with nn inertia phenomenon for the lift force6.

The physical explanation given above for the foroes
in formula (V) may be useful in taking account of the fi-
nlteno6s of the span of a planing body. Thus, for example,
tho component Y1 for bodies of vnrlous shapes may be ob-
tained theoretically as well as experimentally.

VII- FORCES ACTING II?LANDIW(3 ON THE STEP

We shall determine the hydrodynamic forces aoting on
the step as It Is Immersed in the liquid with constant
velocity. “ In the notatio~ of soctlon IV, we have:

w= 0: V*= Va = C(S +It)
. .

.
and

y=.
2mc(p+ K)

~ + “ln(so + -l)

Formulas (V) now beoome

I — —— —-- — .— . . - —- - — —- ——
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1

. . . ..l.{.-
F. . .

“.”..., ,

.’ ..- 1-
. . a. Ffmia ““ . i-‘ii ”=_.”.. -,U ~ 2 . ,a~~ ‘“,Jq..

. . ...
-1’ :

.,,.

. .
. . .

. . -. .
. .

.:.
: (a+)Y.a: = pia .

da “

G
a:(~ + K

,. ..
al

(
Y3=p:c+2

) f-

gY.

“d
0

) -... .. . . .

1

,. .:.

= so: CLl
Ct - da . c.=—= et;.a=.,eo -lS ~t

‘o -1

.. .. ,and ..
““‘Ul

r

. . .
da.

~~~- a)a - .a
=:”.lll(so+

(0 ,.. . .

. .

d-) “
.“.

.
.. .

,.
we .c)btdn. .

~=c ~ “,(:+:)“-“Y1. = “ a
l)”a .

,.
(1)

. . .., ..

Ya =
Pmcah (1++) ~ “

(sO - l)a ‘o ..
(2)

k+ (sO + l)ln(so +.J~) ,(3)

(so - I)a ~ Boa - 1.+ ln(so + i’-) 1
. .

Y3 ---- Pncah

trailing edge, is.,where h Is the” Immersion of the

n =~ct
. .

Combining eq~atLops (l); ‘(2)9 and
.“

Y= pmcahe

(3), we” find

I
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,.

where.—. -.. .

“-”(i+wo-+’J-J--- ‘“ - (4, “
e=

(e. - l)*[JEloa - 1 + ln(mo + J-)J

Wo have ‘further

Hz=: (Yz”+ Y*)

~hus, in landing on the step with oometant veloolty the
general h~drodynamio reaotion reduoee itself to a single
foroe applied at a distanoe from the leading edge equal
to one-fourth the wetted length (fig. 6).

Prom formula (4), it im olear that this forca de-
pends essentially on the rat~o B/K. Yigure 7 shows the
naturo of this dependence graphioally~ It ie interesting
to observe that the curve for ~ has a minimum, a faot
whloh indicates tho existonoe of an optlnum ratio p/K
in landing.

~he Impact force computed from formula (4) will ao-
tually be larg~r than the foroe applied at the step since
we considered a flat botton of infinite span. The finite-
ness of the span and the preeonoe of a V angle result In
a tleareamed water reaction,

In oonneotion with the physical explanation of the
hydrodyna~io forces given in the preoeding paragraph, It
is interesting to oompare with one another the valueta of
Y1 t Ya, and Y= for the case under ooneideratSon. Since
all these foroes are proportional to the, their ratios
uI1l be independent of time- For comparison, their varia-
tion with tho parameter p/K -are shown graphically on
figure 8. the values Y~k, Ya/k, and Y&/k , where

being laid off on tho ordinate axis.

From fornulae (l), (2),”and (i), “

. . Y*
—=li

l’s
—=s0

k k

. .—
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(f!o + 1) h(tito + I/aoa - 1)&..
k

~ + ln(so + Jso% - 1)

We soe that for small values of 13y is comparable
.F’=

with Ya and in this aase It Is therefore inaorreot to
negleot to take into acoount the offeot of the tangential
velooity of the water bohlnd the atop.

PThe llmltlng eases 8s -+ m and E +0 are
K K

shown on figures 9 anU.10S respectively. In -the first
ease, vo have

licl* E lil!lSo - 150645: lim ~ - -2.995

In tho seoond:

Ya=lIim —k : lim + = -1

. .

VIII, FORCES ACTING DURING THE STEADY OSCILLATION 03’A WING*

Wo shall consider the magnitude of the hydrodynanlc
forces during the steady harnonic oscillation of the wing.
Wherever magnitudes appear in complex fern, it is to be
understood that only their real parts are const~erodo

Let the oscillations be of tho fern

8(ava) = Aeikt and 6(avl) = BeiH

where

A. and B. being small values. In the ease of the wing,
B E conat.

Considering, for slnpllclty, c to be oonstant, we
find from formulas (Pa)

‘The problen of the steady oscillations of a plate has been ‘
treated by other methods in the paper by Glauert (referenoe
7) and by Keldysh and Lavrentlev (reference 8).

- .-— .- ----
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From formulas (2) aria [6), section V~ we ~a~e”
.“

Ueing the above and setting

39

(1)

(2)

(3)

x. = a- al - a = -as
r

. we find
ikcq

,.I.

%- 1

f

-i~s
Y(a)da

F3 = pao
4pclAe~

L

da

-= -= [H@(v) - lH~a)(v)] A

The Integral on the right-hand side is expressed by Hankel
...

functions of the second kind. From fornulas (4), section
V, at p = 0, and replaoing 1 by -i, we obtain

..

. .

1 -Ips

J.

se tis lTi =(=)
— o (k)

~=
al .

.We ehall furthermore denote
.

H$a) (v)
=V (p)eix(p)-. ~

H:=)(v) (=)(M). .- iHl. .

(4)

We then have finally

Ta E -2pncAv e
S(kt+%) (5). .

..-

The magnitude V as sben from formul”ai (2] an”d (5) Is.the
ratio of the amplitude of the lift oonponent, arising fron
the presenoo of the .trailing ”vortioee, to the increhtie In
tha llft forae conput.ed,ln aooo.rdanoe to the tatatlonar~
hypothesis: ..

,

Elax Y3
v=

nax(~a - Yao)

—
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ka
depends on ~ = ~. Uhen

1
-sv=-~

2

The ?ngle x is the pQaBe ~hift of the foroe - 73
with respect to the foroe Ya - Yao. Piguro 12 shows the
dependenoo of X on V. Whenk=O

x“:

X=o

The moment z% in the case considered is now expressed
as follows:

Zl - Zl(j = .c+A- B)i~eikt + pm acBe
Ikt

(6)

At large frequency, i.e., when.“ ~>1, the effect

of tho trailing vortices results in a decrease an the lift
force to one-half Its value obtainod on the stationary
hypothesis.

At small values of +0; i.e., at large horizon-

tal ve~ocitiee, tLf3 value of V is near zero and thore-
foro Y~+o. In the latter ease, tho force obtained
according to the theory of motion with constnnt circulation
is near in value to the general actual force. It should
be observed that, as may bo seen from figure 12, Y3 ap-
proaches zero rather slowly when ~ +0.

The suction force P is determined with the aid of
formulae (Va). Since

al
1

J’
;(a)da 73

R&c
i(kt+x)

z J-== =--a
“ an

therefore -

whenoe ..

—.— . ------
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61)

.“ “

- Aoveoe(kt +
.,

. . ..7

)1
a

+ +10

th
tl

wh
to

. .
P

n“conolusioni wd mhall cio~aider the pro Jbotion of
neral hydrodynamic foroe on the horizontal direa-
-Wheq tho wing has the form”of a flat platei we have

,. t ... ..
s= -(Y1 +:Y&+T3)p:+ P “ .“.. ., .

,. “...
~ ie the emall angld.of. lnclinatio~ of thb pla;e
horizontal:

J.”

.0 :

+

f

wdt = ~o + $. (a~a - avl)dt . . .

.. ..

130+& A. sin(kt + c1 + Ca) a.- — tain(kt +“clj~ak

●

,ere,
the

= Po

=

Tho mean
Od is

amAs
k
1%

f

.T

o

val

dt

,ue of

v=—
a {

the

Aoa

horizontal compone lnt

A.

over

[
B. o

.:

a.

(v v- 2 “+ 00

(Usin + )6.a(x + ‘a) (x ) - ain (82V +2COB
.
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I
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,

a B. :. 0
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In applying the general formulae derived in seotion
VII, 1% ia fir6t necemmary to detern$no. a and
&’ at

.ti~erO a ‘= ~ is half the wetted length. AO toOtO
. dt. .

have shown, the wetted length. al im alwaye sonowhat
lnrger than the part t. under the surface level. On
fi.guro 13 are pre.Bented data obtalnod from tests of
Sottorf (reference 3) and those conducted at the Central
Aero-Hydrodynamical Institute by Perelmuter (reference
12). The ratios tl/a are plotted ae ordinntes against

the aOpect ratioa ~ = A “as abscissas. The tests were
F

carried out on flat plates, It $s readily observed from
consideration of the plotted data that at> 1. At large
aspeot ratioO

At snail aspect ratios corresponding to a largo span l!
nay oxcoed \ conaiitera~ly.

To deternine theoretically the ratio al/\ for the
case of steady planing notion ‘of a plate of inf3nite span
is not possible If we linit ourselves to the consideration
of tho notion of a woi~htleas ideal fluid. Actually in
the flow about an inclined plate the hei~ht h of the
trailing edge above the level of the freo surface (fig.
14) approaches infinity as the dlstanoe fron the plate ln-
craasos (reference 1). For this reason, lt is also impos-
sible from such considerations to deternlne the wetted
length below the surface level. In the flow of a heavy
fluid with spray fornation, the fluid in front of the
plate cannot rise higher than a certain level, depending
on the planlng speed- Fron the test d8ta presented,. it
is seen that the wetted length depends essentially on the
span of the planing plate.

Let us nake the assumption that, In unsteady motion,
ii depends only on \ apd that

al = nl (1)

where n is “a cons’tant ”ooefficient. The value of n nay
be obtained fron test data referring to that st&tionary
state with respect to which we coasidar the disturbed mo-

-. -— .—
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..

tion to take plaoe.”” Glauert and ‘Perring”ih’.their paper on
.. ‘ the stability of. +.seqplane in planlng assume It=a,

I.e., n = 1 (referenee la). ‘-’”’ - - “ . .
. . ,..,

,..

It Ie neoeaaary here to niake the following re80rva-
tion. On figure 13, It ~s seen that for snail aspeot
ratiom n. depends very niueh on the “aspeot “ratio. with
unatoady planlng~ the aspeot ra%lo %e variable, 80 that
for those cases where It is small we” have no previous as-
suranoe that ,It ie always pernlsslble to ndgleot the varl-
ationsm in n; At large aepeot ratios, however, the .var%a~
tlons in n are nogligible~

.
Considering n ae constant and the disturbanoee

small, 8a may e~eily be o$tainedq Wo have

where h is the imnersion of the trailing edge,
e

y = Sh,
= 8P.

(2)

(3)

We shall now prooeed to the determination of the hy-
drodynamic forces. Retaining in formula II only small
quantities of the first orde=, we have

Y
pm a. d(avl)

-Yo=~—
dt (

+ PIIT.Ooll(ava) + pm aocopo 60+

aa ,
aooo

+P~
f

Y(;)&u .

~. G
.

If Ma i~ the monent of the hydrodynamic forces
respect to-the trailing edge, then -

Ma = M+(ao+tla)(Y-Ye)+

From (III)”and (VI), to an aocuracy
of smallness, we find

(VI)

With

(a. + 8 A)YO

.of the””seoond order
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i3(tiq ) + fma~cotl (ava)

3a.
~Y3 “ (VII)

. .

The variation” ~(.~vl) and a(ava) nay be .ogpreaeed by
the klnenatic elenents of”motion of tho trailing edge. We
have

dy .(ao.+Sa)aw
&Va = (a. +. 13a)(co + 8c)”(Bo + e) + (a. + 6a) ~-~~

. .

and fron f~rmula (?.), retaining only B~all quantities of
the first ”’order, ye obtain

and similarly

(4)

. .

“ “(5)

..

In detornining the forces, the greatest difficulty
mot with is in tho computation of Y3. To obtain this conpo-
nont, we shall consider snail steady oscillations for which

(6)

The integrnl’oquat~on for the determination of Y(cL) in
this case is the same as for the wing and thoreforo

-Y= = ; .73” = - gpTIAcvo I(kt+x) . (7)

Uo shall now consider in detail the forces acting on
the plate qoving acoordlng to the law

.(8,)

whoro P,.Q, and H, are..ccmplex constants.

,,
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Using w3-lati’0n&..(2).,(3)9 (4).,(5), ~d (a)g ,wo find
. ..-.. from formulas..(V.I),?qQ-_(?II):

{
- ne[ti~.Wo= .n(i - ~~’ix)p “

----

y. ye__ -.&m3(i in - ve ‘x) lkP
2. . . 1,. . ! .....- r

~aa .
-— kaP - plla%(2 - # el%)ik~ +“% kaQ

2

.6
.> .. .

and

M= - Mao = &eikt
,{

~ pwac%(l - ~Vei3P
.,..

+gpn aac(l + n - veix)ikP - ~ap -
2

a
. .

In the abcve formulas , the subscript o has baen omitted
from thoao magnitudes which correspond to steady planing.

Fmmulas .(9).nnd (10) wore. derl~ed by us from the
gonernl expressions for the hydrodynamic forces In un-
steady planing, It is interesting to compare them with
the results which may be obtained cn the statlona~y hypoth-
esis or on the aasumptiona of Glauert and Perring. The
stationary mpothosls leads to the formulas following:

where ‘Ml is” the moment with resp~ct to. the center of the
vetted longth- !Che mcment with respect tc the trailing
edge, 1.s equal to,,. . . .

.- .:.. . ...-.’...
. .

.—— _.. —..-— .- —. —. -.



Retaining sa”all ,tqrns or. t.iiefirst qrdor only

., . . .

The above fornulas appllod to tho harnonio oscillations
under consideration give

Y. - yo.gQ
{

ikt &can”p” + ~ac

2 (1+ :) ‘kp -

(11)

- ~~aaca~ .
-~

3 pm3clkQ + 3pnaao~ikM
.}

(12)
. .

. ~.
Glauert and Perrlng, in their paper cited above,

nake the followlng assumptions t.o obtain tho I@modynnmic
forcest . . : ... . .
.,

: 1) Iniunsteady planing no’tlo-n, th”e.ldf.t forco “is oom-
. 0 puted aocordtng to the .forLmla .

. .

T - qeva~

whero q Is a constant coefficient proportional to the
width of the plate and to the density of the
fluid ,

B the wetted lon~th below the undisturbed water. .
level .(figa 15),

v the magnitude of tho velooity of the point of
the plate eolncidlng with tho center of pros-

., sure. . . ,.:-;J. . .
: .... . . . .

B the angle between the plato and the velocity
direction.

.. -. ..—. - —.—. . . - - -
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2) In unsteady planitig ~otlon, ”thd forob Y is ap- “
-... ..-%... pll?d at a dlstanoe Va from the trailing edge

whore’ ‘~” is tho va-l~.in steady planing. -.~or

Using these assumptions, didoarding
order of smallness, and setting s = 2a;
tain - .

terms. of higher ,
lro e e, Wo ob-

!Che values ‘of tho hydrodynamic forces obtained for the
harnonlc oscillations of a date on the basis of the varl-

ous..asswyptlons nado are comparod in the tablo below, Jn
transferring the data fron formulas (9),
(12) to the table, the nagnltude pmaca~
by Yo.

!lran”slatlon by S. Reiss,-
National Advisory Conmtttee

, for Aeronautics. .

.

.

1.

. .

. .
.-

. .
.

. .. .-. -.

. .

(10), (11), and
has been replaced
... .

.. .
,

..

.

. .

. .

,.

:..
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Comparison of Hydrodynamic Forces Obtained on the Basfs of
Various Assumptions for Steady Harmonic Oscillations
with Respect to the Stationary Planing Condition
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